IMU (Inertial Measurement Unit)

M-G330PDG0

• Small size & Light Weight: 24 x 24 x 10 mm³, 10 g

Low-Noise, High-Stability
 Gyro Bias Instability:3 °/ h
 Angular Random Walk: 0.1 °/√h

• Calibrated Stability (Bias, Scale Factor, Axial Alignment)

• Interface: SPI / UART

• Calibration Temperature: -40 °C to +85 °C

• Power Supply Voltage: 3.3 V

Recommended Application

• Autonomous Vehicle • Navigation Systems

• Vibration Control and Stabilization Pointing and Tracking Systems

Product Name and Number M-G330PDG0 : X2G000201000100

RECOMMENDED OPERATING CONDITION

Parameter	Condition	Min.	Тур.	Max.	Unit
Power Supply Voltage, V _{CC}		3.15	3.3	3.45	V
Digital Input Voltage		GND	_	Vcc	V
Digital Output Voltage		-0.3	_	$V_{CC} + 0.3$	V
Calibration Temperature	Performance parameters are applicable	-40		+85	°C
Operating Temperature		-40	_	+85	°C

SPECIFICATIONS

 $T_a = 25 \,^{\circ}$ C. $V_{CC} = 3.3 \,^{\circ}$ V. Angular rate = $0 \,^{\circ}$ /s. $\leq \pm 1 \,^{\circ}$ G. unless otherwise noted.

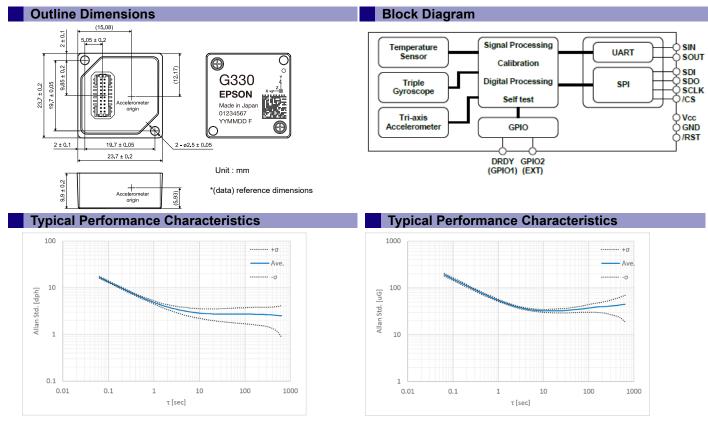
_T _a = 25 °C, V _{CC} = 3.3 V, Angular rate = 0 °/s, ≤ ±1 G, unless otherwise noted.								
Test Condition / Comment	Min.	Тур.	Max.	Unit				
	_	±400	_	°/s				
16 bit, when 32 bit x 2 ¹⁶	-0.2 %	66	+0.2 %	LSB/(°/s)				
1σ	_	0.05	_	% of FS				
1σ, Axis-to-axis, Δ = 90 ° ideal	_	0.01	_	0				
1 σ, −10 °C ≤ TA ≤ +60 °C	_	720	_	°/h				
1 σ, −40 °C ≤ TA ≤ +85 °C	_	1800	_	°/h				
1σ, Turn-on to Turn-on *3	_	36	_	°/h				
Average	_	3	_	°/h				
Average	_	0.1	_	°/√h				
f = 10 Hz to 20 Hz	_	7	_	(°/h)/√Hz, rms				
	_	500	_	Hz				
	_	±8 / ±16 *7	_	G				
16 bit, when 32 bit x 2 ¹⁶	-0.2%	4(8 G)/2(16 G)	+0.2%	LSB/mG				
1 σ, < 1 G	_	0.1	_	% of FS				
1 σ, Axis-to-Axis, Δ = 90 °ideal	_	0.01	_	0				
1 σ, −40 °C ≤ T _A ≤ +85 °C	_	4	_	mG				
1σ, Turn-on to Turn-on *3	_	4	_	mG				
Average	_	34	_	μG				
Average	_	0.03	_	(m/s)/√h				
f = 10 Hz to 20 Hz	_	70	_	µG/√Hz, rms				
	_	333	_	Hz				
Inclination Mode	-80	_	+80	۰				
Euler Mode ANG1:Roll	-45	_	+45					
ANG2:Pitch	-180	_	+180					
ANG3:Yaw*4	-180	_	+180					
	_	0.00012207	_	rad/LSB				
JIDOT	_	0.00699411	_	°/LSB				
1 σ, Static	_	0.3	_	0				
				1				
1 σ, Dynamic *5 (100 °/s, Max.)	_	0.3	_					
1 σ, Dynamic ° (100 °/s, Max.)	_	0.3	_					
	Test Condition / Comment 16 bit, when 32 bit x 2^{16} 1 σ 1 σ , Axis-to-axis, $\Delta = 90^{\circ}$ ideal 1 σ , -10° C \leq TA \leq +60 °C 1 σ , -40° C \leq TA \leq +85 °C 1 σ , Turn-on to Turn-on '3 Average Average f = 10 Hz to 20 Hz 16 bit, when 32 bit x 2^{16} 1 σ , $<$ 1 G 1 σ , Axis-to-Axis, $\Delta = 90^{\circ}$ ideal 1 σ , -40° C \leq T _A \leq +85 °C 1 σ , Turn-on to Turn-on '3 Average Average Average f = 10 Hz to 20 Hz Inclination Mode Euler Mode ANG1:Roll ANG2:Pitch ANG3:Yaw '4 16bit 1 σ , Static	Test Condition / Comment	Test Condition / Comment Min. Typ.	Test Condition / Comment Min. Typ. Max. 16 bit, when 32 bit x 2 ¹⁶ -0.2 % 66 +0.2 % 1σ -0.05 -0.01 -0.01 1σ, Axis-to-axis, Δ = 90 ° ideal -0.01 -0.01 -0.01 1σ, Axis-to-axis, Δ = 90 ° ideal -0.01 -0.01 -0.01 1σ, Turn-on to Turn-on '3 -0.3 -0.3 -0.3 Average -0.1 -0.1 -0.1 -0.1 Average -0.1 -0.1 -0.1 -0.1 -0.1 -0.1 -0.1 -0.1 -0.2 -0.2 4(8 G)/2(16 G) +0.2% -0.2% 4(8 G)/2(16 G) +0.2% -0.2% 4(8 G)/2(16 G) +0.2% -0.2% -0.2% 4(8 G)/2(16 G) -0.2% -0.2% -0.2% -0.2% -0.2% -0.2% -0.2% -0.2%				

^{*1)} This is a reference value used for internal temperature compensation. There is no guarantee that the value gives an absolute value of the internal temperature.

^{*2)} This is the temperature scale factor for the upper 16 bit (TEMP_HIGH). *3) Turn-on to turn-on / Day by day, estimated variation during 5 consecutive days.

^{*4)} Yaw axis is not compensated for errors caused by drift.

^{*5)} Dynamic accuracy is based on measurement data that has been measured from a stationary state. The accuracy that can be achieved depends on the input movement.


^{*6)} Attitude output accuracy is based on measurement data for GLOB_CMD2[0x16(W1)], bit[5:4]= 00: modeA. *7) Selectable by register setting.

Note) The values in the specifications are based on the data calibrated at the factory. The values may change according to the way the product is used.

Note) The Typ. values in the specifications are average values or 1 $\boldsymbol{\sigma}$ values.

Note) Unless otherwise noted, the Max. / Min. values in the specifications are design values or Max. / Min. values at the factory tests.

Note) Acceleration characteristics do not depend on the output range.

Gyro Allan Variance Characteristic

Accelerometer Allan Variance Characteristic

The product characteristics shown above are just examples and are not guaranteed as specifications.

Notice of the Document

NOTICE: PLEASE READ CAREFULLY BELOW BEFORE THE USE OF THIS DOCUMENT

The content of this document is subject to change without notice.

- This document may not be copied, reproduced, or used for any other purposes, in whole or in part, without the consent of Seiko Epson Corporation("Epson")
- Before purchasing or using Epson products, please contact with our sales representative for the latest information and be always sure to check the latest information published on Epson's official web sites and sources
- Information provided in this document such as application circuits, programs, usage, etc., are for reference purpose only. Please use the application circuits, programs, usage, etc. in the design of your equipment or systems at your own responsibility. Epson makes no guarantees against any infringements or damages to any third parties' intellectual property rights or any other rights resulting from the information. This document does not grant you any licenses, intellectual property rights or any other rights with respect to Epson products owned by Epson
- Epson is committed to constantly improving quality and reliability, but semiconductor products in general are subject to malfunction and failure. In using Epson products, you shall be responsible for safe design in your products; your hardware, software and systems are designed enough to prevent any harm or damages to life, health or property even if any malfunction or failure might be caused by Épson products. In designing of your products with using Epson products, please be sure to check and comply with the latest information regarding Epson products (this document, specifications, data sheets, manuals, Epson's web site, etc.). When using the information included in the above materials such as product data, chart, technical contents, programs, algorithms and application circuit examples, you shall evaluate your products both in stand-alone basis and within your overall systems. You shall be solely responsible for deciding whether or not to adopt and use Epson products.
- Epson has prepared this document and programs provided in this document carefully to be accurate and dependable, but Epson does not guarantee that the information and the programs are always accurate and complete. Epson assumes no responsibility for any damages which you incurred by due to misinformation in this document and the programs. 5
- No dismantling, analysis, reverse engineering, modification, alteration, adaptation, reproduction, etc., of Epson products is allowed.

 Epson products have been designed, developed and manufactured to be used in general electronic applications (office equipment, communications equipment, measuring instruments, home electronics, etc.) and applications individually listed in this document ("General Purpose"). Epson products are NOT intended for any use beyond the General Purpose that requires particular/higher quality or reliability in order to refrain from causing any malfunction or failure leading to harm to life, health or serious property damage or severe impact on society, including, but not limited to listed below. Therefore, you are advised to use Epson products only for the General Purpose. Should you desire to buy and use Epson products for the particular purpose other than the General Purpose, Epson makes no warranty and disclaims with respect to Epson products, whether express or implied, including without limitation any implied warranty of merchantability or fitness for any particular purpose.

[Particular purpose]

Space equipment (artificial satellites, rockets, etc.)

Transportation vehicles and their control equipment (automobiles, aircraft, trains, ships, etc.)

Medical equipment (other than applications individually listed in this document) / Relay equipment to be placed on sea floor Power station control equipment / Disaster or crime prevention equipment / Traffic control equipment / Financial equipment

- Other applications requiring similar levels of reliability as the above
 Epson products listed in this document and our associated technologies shall not be used in any equipment or systems that laws and regulations in Japan or any other countries prohibit to manufacture, use or sell. Furthermore, Epson products and our associated technologies shall not be used for developing military weapons of mass destruction, military purpose use, or any other military applications. If exporting Epson products or our associated technologies, you shall comply with the Foreign Exchange and Foreign Trade Control Act in Japan, Export Administration Regulations in the U.S.A (EAR) and other export-related laws and regulations in Japan and any other countries and follow the required procedures as provided by the
- Epson assumes no responsibility for any damages (whether direct or indirect) caused by or in relation with your non-compliance with the terms and conditions in this document. Epson assumes no responsibility for any damages (whether direct or indirect) incurred by any third party that you assign, transfer, loan, etc., Epson products.
- 11. For more details or other concerns about this document, please contact our sales representative.
- Company names and product names listed in this document are trademarks or registered trademarks of their respective companies.

2022 08

© Seiko Epson Corporation 2023, All rights reserved.

SEIKO EPSON CORPORATION

MD SALES & MARKETING DEPT.

https://global.epson.com/products and drivers/sensing system/contact/